操作说明:
尝试从路面或桥上任意一点出发,走遍七座桥但不能重复,最后回到出发点。
产品简介:
18 世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸联系起来。有个人提出一个问题:一个步行者怎样才能不重复、不遗漏地一次走完七座桥,最后回到出发点。后来大数学家欧拉把它转化成一个几何问题——一笔画问题。他不仅解决了此问题,且给出了连通图可以一笔画的充要条件是:奇点的数目不是 0 个就是 2 个(连到一点的线的数目是奇数条,就称为奇点,如果是偶数条就称为偶点。要想一笔画成,必须中间点均是偶点,也就是有来路必有另一条去路,奇点只可能在两端,因此任何图能一笔画成,奇点要么没有要么在两端!
视频演示:
补充材料:
1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支——图论与几何拓扑,也由此展开了数学史上的新历程。
七桥问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为“欧拉定理F”。
18世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸联系起来(如概述图)。有个人提出一个问题:一个步行者怎样才能不重复、不遗漏地一次走完七座桥,最后回到出发点。后来大数学家欧拉把它转化成一个几何问题——一笔画问题。他不仅解决了此问题,且给出了连通图可以一笔画的充要条件是:奇点的数目不是0个就是2个(连到一点的数目如果是奇数条,就称为奇点;如果是偶数条,就称为偶点。要想一笔画成,必须中间点均是偶点,也就是有来路必有另一条去路,奇点只可能在两端。因此任何图能一笔画成,奇点要么没有,要么在两端)。
推断方法
当欧拉在1736年访问普鲁士的哥尼斯堡(现俄罗斯加里宁格勒)时,他发现当地的市民正从事一项非常有趣的消遣活动。哥尼斯堡城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。
欧拉把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。
后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。
存在问题
著名数学家欧拉的画像
七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成。
欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。
接下来,欧拉运用图中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!
在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到了如图一样的几何图形。若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。这样著名的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由D或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是5为奇数,于是可知从A出发是无解的。同时若从B或D出发,由于B、D的度数分别是3、3,都是奇数,即以之为起点都是无解的。
由上述理由可知,对于所抽象出的数学问题是无解的,即“七桥问题”也是无解的。
应 用:
哥尼斯堡七桥问题在数学领域的应用主要体现在图论的发展上。欧拉通过对七桥问题的研究,不仅解决了哥尼斯堡七桥问题的无解性,还提出了“一笔画”问题,并将这个问题抽象为图论中的一个基本问题。欧拉的这一工作为图论的诞生奠定了基础,并提出了著名的“欧拉定理”,即一个连通的无向图,具有通过这个图中的每一条边一次且仅一次的路,当且仅当它的奇数次顶点的个数为0或为212。
此外,哥尼斯堡七桥问题还展示了数学在解决实际问题中的应用。通过简化问题、抽象化处理,欧拉将复杂的实际问题转化为数学模型,从而找到了问题的解决方案。这种方法不仅解决了哥尼斯堡七桥问题,还展示了数学在处理复杂问题时的强大能力3。
在更广泛的应用中,哥尼斯堡七桥问题教会了我们如何通过抽象和简化来解决问题。这种思维方式不仅在数学中有用,还可以应用于其他领域,帮助我们更好地理解和解决复杂问题3。