碳碳键的分子结构


碳碳键的分子结构






操作说明:

模型展示。


产品简介:

通过展示甲烷、乙烯、乙炔三种有机物的分子结构模型,展示碳碳键中的单键、双键、三键之间的性质。


甲      烷:

甲烷是具有正四面体结构的非极性分子,是最简单的有机物。甲烷作为常规天然气、页岩气、可燃冰等的主要组成成分,是非常重要的碳基资源 。它是一种最主要的非CO2温室气体,在大气的平流层,甲烷会被分解为水蒸气(云),从而导致臭氧层被破坏 。在今天的大气中,有大约20%的甲烷来自古代,是在几百万年前就存在于煤层、海底、天然气矿藏和融化了的永久冻土下面而到今天才释放出来的。而近代产生的甲烷,来源主要有牛、泥沼、沥青、稻田、新开垦的土地、腐败的垃圾和白蚁等。无论哪种来源,都是由细菌在缺氧条件下进行的有机物分解,若是有氧则会产生CO2。

物理性质:

无色、可燃、无毒气体,沸点是-161.49℃。甲烷对空气的重量比是0.54,溶解度差。

爆炸性:

在正常气压下,甲烷的爆炸下限(LEL)为5-6%,爆炸上限(UEL)为15-16%;甲烷在空气中的浓度达到9.5%时,就会发生最强烈的爆炸。其中,氧浓度降低时爆炸下限变化不大,而爆炸上限明显降低;当氧浓度低于12%时,混合气体就失去爆炸性。

甲烷的生成机制

原煤:分为四个阶段。
第一阶段属于吸附甲烷的脱除。
第二阶段有两种反应共同作用生成,分别是甲氧基中甲基的脱落,生成二氧化碳和甲烷或醇类官能团中甲基的脱落,生成甲烷和水。
第三阶段甲苯热解生成甲烷和苯,其次是亚甲基桥键断裂和氢化芳香环的脱甲基反应。
第四阶段是芳香体系脱H与残余的C反应的结果。

应    用:

直接转化制高值化学品

(1)甲烷氧化偶联制乙烯(OCM) [9]
1982年,KELLER等 [10]首次报道了甲烷氧化偶联制C2烃的反应过程。1985年,DRISCOLL等 [11]首先提出OCM遵循异相和均相反应相结合的反应机理。甲烷的C—H键首先被催化均裂生成气相甲基自由基,然后偶联为乙烷,乙烷进一步在催化剂上或气相中脱氢转化为乙烯。LUO等 [12-13]采用同步辐射真空紫外光电离质谱(SVUV-PIMS)技术首次在线检测到Li-MgO催化甲烷和乙烷氧化反应中的气相甲基自由基、乙基自由基、过氧甲基自由基、甲基过氧化氢和乙基过氧化氢等重要气相中间体,为OCM和乙烷氧化脱氢反应的机制研究提供了直接的实验证据。
(2)甲烷无氧芳构化制芳烃(MDA)
1993年,WANG等 [14]报道了Mo/ZSM-5催化甲烷无氧芳构化制苯等芳烃的反应,提出了双功能机理,即活性Mo物种和Brønsted酸位分别作为甲烷活化和C2烃芳构化的活性位,得到了广泛认可。但是,部分研究者认为活性Mo物种拥有固有芳构化特性,分子筛骨架为活性Mo位提供锚定位点,十元环的择形环境促进了芳烃的形成 [15-16]。2018年,KOSINOV等 [17]的研究取得了突破性进展,并提出了“烃池机理”,即甲烷活化后的初级产物与分子筛限域的芳香型积炭发生二次反应,形成苯等芳烃。VOLLMER等 [18]提出了类似的Mars-van-Krevelen机理(MvK),活性Mo位上含碳原子,该碳原子在反应中参与苯环的形成。ÇAĞLAYAN等 [19]和KOSINOV等 [20]认为MDA过程中存在两条独立的C—H键活化路径。
(3)甲烷无氧直接制乙烯
GUO等 [21]采用HAADF-STEM、in situ XAS等技术表征研究表明,MTOAH反应中Fe©SiO2的活性位为单原子铁配位两个碳原子和一个硅原子形成的单铁中心(FeSiC2); XIE等 [22]报道单原子Pt1@CeO2催化MTOAH过程 ,经DRIFTS研究结果显示,反应后Pt1@CeO2存在具有π键的乙烯和乙炔等吸附物种,这说明单Pt位可能具有稳定C2烃吸附物种的能力。EGGART等 [23]采用火焰喷雾热解法(FSP)制备了Pt-CeO2单原子催化剂,operando XAS结果表明,在反应条件下Pt与Ce成键,归因于CeO2对Pt的包覆修饰或者Pt—Ce合金的形成。HAO等 [24]采用氢原子里德堡标识飞行时间谱-交叉分子环化装置,首次在实验中检测到MTOAH过程产生的氢自由基,其形成速率随反应温度的增加而增加,还发现由1,2,3,4-四氢萘(THN)和苯等供氢分子热裂解产生的氢自由基可以提升甲烷转化率及烯烃和芳烃的收率,并降低乙烯形成的起活温度,由此提出了气相氢自由基促甲烷活化反应机制(·H + CH4→ H2 + ·CH3 [25]

间接转化

通过重整生产合成气(一氧化碳和氢气混合气),合成气经甲醇路径、费托合成或新的OXZEO过程获得高值化学品。 [26]
(1)甲烷水蒸气重整(SRM)
CH4+H2O = CO+3H2……Δ Δ =206kJ·mol-1
(2)甲烷催化部分氧化(POM)
2CH4+O= 2CO+4H2……Δ Δ =-44·kJ·mol-1
(3)甲烷二氧化碳重整(CDM)
CH4+CO= 2CO+2H2……Δ Δ =+247 ·kJ·mol-1
(4)甲烷的CO2-O2联合重整
CO2-O2联合重整 CH反应是将甲烷催化部分氧化这一放热过程和甲烷二氧化碳重整这一吸热过程相结合来制备合成气。

乙       烯:

乙烯,化学式为C2H4,分子量为28.054,是由两个碳原子和四个氢原子组成的有机化合物,两个碳原子之间以碳碳双键连接。常温常压下的乙烯是一种具有甜味的无色气体。不溶于水,密度比空气小,易燃。 
乙烯是石油化工最基本原料之一,是合成纤维、合成橡胶、合成塑料(聚乙烯(PE)、高密度聚乙烯(HDPE)、聚氯乙烯(PVC)、合成乙醇(酒精)等的基本化工原料,还可用于二氯乙烷乙二醇烷基铝氯乙烯、醋酸乙烯酯等化工产品的生产,也可用作水果和蔬菜的催熟剂,是一种已证实的植物激素。 
乙烯存在于植物的某些组织、器官中,是由蛋氨酸在供氧充足的条件下转化而成的。乙烯也是植物激素的一种,能够调节植物的各种发育过程(从种子萌发到衰老),也参与着植物生长和应激反应的调控,具有促进植物的果实、细胞扩大,籽粒成熟等作用,可用于作物改良
2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,乙烯在3类致癌物清单中。
乙烯最早可能是由德国医生约翰·约阿希姆·贝歇尔(Johann Joachim Becher)发现的,他在1669年的《地下物理学》(Physica Subterranea)中提到通过用硫酸加热乙醇而获得一种气体 。1795 年,荷兰化学家约翰·鲁道夫·戴曼、阿德里安·帕茨·范·特罗斯特维克、安东尼·劳伦伯格和尼古拉斯·邦特研究了乙烯的性质,他们发现乙烯与氢气不同,它同时含有碳和氢 。他们还发现乙烯可以与氯结合,产生油状物质。这一发现使乙烯在当时被命名为烯烃气体(炼油气体)
乙烯对植物有作用的现象发现已久,中国古代就有将果实放在燃烧香烛的房子里可以促进果实成熟的案例。19世纪在德国,人们发现泄漏的煤气管道旁的树叶容易脱落。直到1934年甘恩(Gane)才首先证明植物组织确实能产生乙烯。随着气相色谱技术的应用,使乙烯的生物化学和生理学研究方面取得了许多成果,研究也证明了在高等植物的各个部位都能产生乙烯。1966年乙烯被正式确定为植物激素。
分子式:C2H4
结构简式:CH2=CH2
乙烯分子的比例模型
乙烯由4个氢原子和2个碳原子组成,6个原子构成一个平面。两个碳原子取sp2杂化,形成的三个sp2杂化轨道处于同一平面,未参与杂化的p轨道与该平面垂直。碳原子之间由双键连接,该双键由一个σ键和一个π键构成,其中σ键是由sp2杂化轨道通过轴向重叠形成,π键由p轨道通过侧面重叠形成。

应用领域

工业领域

高密度聚乙烯(HDPE)
乙烯是石油化工最基本原料之一,广泛用于聚乙烯(PE)、高密度聚乙烯(HDPE)、聚苯乙烯(PS)、聚氯乙烯(PVC)等塑料的制造。其中HDPE具有耐热、强度高等特点,并且对酸、碱、油、油脂、溶剂和洗涤剂等化学品具有很强的耐受性,因此它被广泛用于食品、药品、化妆品、油漆、粘合剂等的包装,还用于建筑材料、汽车零件、玩具甚至服装的生产。 
此外,乙烯也可用于氧乙烯焊接和切割金属 。还可用于二氯乙烷、乙二醇、烷基铝、氯乙烯、醋酸乙烯酯、氯乙烷、氯丙烷、乙醛、乙醇、苯乙烯、丁苯橡胶、聚酯树脂、三氯乙烯等化工产品的生产

农业与生态领域

乙烯是一种气态植物激素,可调节各种植物发育过程(从种子萌发到衰老),也参与着植物生长和应激反应的调控 
最早报道的植物对乙烯的反应是“三重反应”(triple response of ethylene),该反应的作用有:①抑制茎的伸长生长;②促进茎和根的增粗;③促进茎的横向增长。用乙烯处理黄化幼苗茎可使茎加粗和叶柄偏上生长。
乙烯可促进植物的果实、细胞扩大,籽粒成熟。由于乙烯可以促进RNA和蛋白质的合成,并可在高等植物体内使细胞膜的透性增加,加速呼吸作用,因而当果实中乙烯含量增加时,已合成的生长素又可被植物体内的酶或外界的光所分解,进一步促进其中有机物质的转化,加速成熟。但由于乙烯是气体,难以使用,所以农业上常用的是能够释放出乙烯或促进植物产生乙烯的物质,比如乙烯利、乙烯硅、乙二肟、甲氯硝吡唑、脱叶膦、环己酰亚胺(放线菌酮),这些统称为乙烯释放剂。国内外最为常用的仅是乙烯利,用于果实催熟、棉花采收前脱叶和促进棉铃开裂吐絮、刺激橡胶乳汁分泌、水稻矮化、增加瓜类雌花及促进菠萝开花等。
乙烯也有促进植物器官(叶、花、果等)衰老或脱落的作用。还可诱导花芽分化,促进某些植物(如瓜类)的开花与雌花分化,促进橡胶树、漆树等排出乳汁,促进根的生长和分化、插枝不定根的形成,打破种子和芽的休眠,诱导次生物质的分泌等。
此外,乙烯在植物的应激反应调控中也有重要作用,被植物用来减轻环境压力等非生物胁迫对自身发育和生长的负面影响。植物有时会生长在不利的环境条件中,并暴露在各种压力下,例如热、冷、重金属、盐、辐射、光照不良、营养缺乏、干旱或洪水等。为了适应不利环境,植物进化出了一些激素调控手段,使得植物面临一定的非生物胁迫时能够触发防御机制。而乙烯就是相关调控手段所使用的激素之一,它可通过与其他激素合作,如茉莉酸(JA)、脱落酸(ABA)、油菜素类固醇(BR)、生长素赤霉酸(GA)、水杨酸(SA)和细胞分裂素(CK)等,在适当的情况下触发防御和生存机制,协调植物的生长发育,以应对非生物胁迫。乙烯类植物生长调节剂中还有一类是乙烯合成抑制剂,它是通过抑制乙烯的合成来调节植物的生长。
现代育种工作和生物技术创新的重点是最大限度地减少植物的防御反应(这可以加速生长),并在不引起产量损失的情况下利用这些自然应激反应机制,这将是在不断变化的气候下保障粮食供应稳定的关键 [19]。所以乙烯的相关生物作用可为未来的作物改良打开新的窗口。


«    2025年2月    »
12
3456789
10111213141516
17181920212223
2425262728
网站分类
搜索
文章归档
站点信息
  • 文章总数:208
  • 页面总数:208
  • 分类总数:13
  • 标签总数:30
  • 浏览总数:68803
友情链接
最近发表

PowerBy PHP + MySQL Copyright © 2019-2080 @TT 老陶工作室研发